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This week intro

1 Directives concerning the MLP test
2 Section 3.1: tangents and the derivative at a point
3 Section 3.2: the derivative as a function
4 Section 3.4: velocity
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Inclination 1.1
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The (angle of) inclination is the angle θ that ` makes with the
horizontal axis.
The angle is measured from the positive x-axis to `.
Turning counterclockwise means θ > 0.
Turning clockwise means θ < 0.
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The slope of a line 1.2
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The slope of ` is tan θ = ∆y
∆x = y2 − y1

x2 − x1
.

This holds for every choice P1 = (x1, y1) and P2 = (x2, y2), as long as
P1 6= P2.
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Equation of a line through a point with given slope 1.3
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Let ` be the line through P = (x0, y0) with slope m, then for every
point (x, y) 6= P on ` we have

m = y − y0
x − x0 ×(x − x0)

y − y0 = m(x − x0)
+y0y = m(x − x0) + y0.

The equation of the line through P and with slope m is

y = m(x − x0) + y0
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Equation of a line with given slope and y-intercept 1.4
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m = tan θ

Let ` be the line through with slope m and with y-intercept b, then `
passes through (0, b).
The equation of ` is y = m(x − 0) + b, simplified:

y = mx + b
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The derivative of a function 2.1

We define the derivative of f at x0 as

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)
h .

The number f ′(x0) can be interpreted as:

the slope of the graph of y = f (x) at the point
(
x0, f (x0)

)
;

the slope of the tangent line to the graph of y = f (x) at the point(
x0, f (x0)

)
;

the rate of change of f (x) at the point x0.

Differentiation - Secant.nb
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Example 2.2

Example

Calculate the derivative of f (x) = x2 at 1 with the definition.

h 1 + h f (1) f (1+h) f (1+h)−f (1) f (1+h)−f (1)
h

1 2 1 4 3 3

0.5 1.5 1 2.25 1.25 2.5

0.25 1.25 1 1.5625 0.5625 2.25

0.01 1.01 1 1.0201 0.0201 2.01

0.001 1.001 1 1.002001 0.002001 2.001

This suggests: when h approaches 0, then f (1 + h)− f (1)
h approaches 2.
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Example 2.3

Example

Calculate the derivative of f (x) = x2 at 1 with the definition.

f (1 + h)− f (1)
h =
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Example 2.4
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y = x2

The tangent line has slope f ′(1) = 2 and passes through(
1, f (1)

)
= (1, 1).

Hence the tangent line is described by the equation

y = 2x − 1
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Example 2.5

Example

Calculate the derivative of f (x) = x2 at a with the definition.

f (a + h)− f (a)
h =
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Example 2.6

Example

Calculate the derivative of f (x) =
√

x at a with the definition.

f (a + h)− f (a)
h =
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Example 2.7

Example

Calculate the derivative of f (x) = 1
x at a 6= 0 with the definition.

f (a + h)− f (a)
h =
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The derivative as a function 3.1

Definition
The derivative of the function f is the function f ′ whose value at x is

f ′(x) = lim
h→0

f (x + h)− f (x)
h .

The function f is differentiable at x if f ′(x) exists.

The process of calculating f ′ is called differentiation.

Alternative notations for the derivative are

d f
d x and d

d x f (x).
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Example 3.2
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f (x) = x2

f ′(x) = 2x

On slide 10: the derivative of f at a is f ′(a) = 2a.

Replace a by x: the derivative of f is the function f ′(x) = 2x.
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Example 3.3
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2

f (x) =
√

x

f ′(x) = 1
2
√

x

On slide 11: f ′(a) = 1
2
√

a .

Replace a by x: f ′(x) = 1
2
√

x (x > 0)
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Example: the derivative of f (x) = 1/x 3.4
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f (x) = 1

x
f ′(x) = − 1

x2

On slide 12: the derivative of f at a is f ′(a) = − 1
a2 .

Replace a by x: f ′(x) = − 1
x2 (x 6= 0)
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Powers of x 3.5

Theorem

For all real numbers α we have d
d x
(
xα) = α xα−1

Check:

Let α = 1
2 , then

d
d x
(
x

1
2
)

=

Let α = −1, then
d
d x
(
x−1

)
=
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Average velocity 4.1

Consider a moving object and assume that we know the traveled distance
as a function of time s(t).

s(tA) s(tB)

If the object moves from s(tA) to s(tB), the displacement is
s(tB)− s(tA).
The average velocity over the interval (tA, tB) is the displacement
per elapsed time, and is equal to

s(tB)− s(tA)
tB − tA
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Velocity 4.2

Consider a moving object and assume that we know the traveled distance
as a function of time s(t).

s(tA) s(tB)

s(tA) s(tB)

s(tA) s(tB)

The velocity at time tA is the limit of the average velocity over the
interval (tA, tB) where tB approaches tA:

v(tA) = lim
tB→tA

s(tB)− s(tA)
tB − tA

.
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Velocity 4.3

v(tA) = lim
tB→tA

s(tB)− s(tA)
tB − tA

.

Define h = tB − tA, then

tB = tA + h and

“tB → tA” is equivalent to “h → 0”.

v(tA) = lim
tB→tA

s(tB)− s(tA)
tB − tA

= lim
h→0

s(tA + h)− s(tA)
h = s′(tA).

Velocity is the derivative of displacement
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Average acceleration 4.4

Consider a moving object and assume that we know the velocity as a
function of time v(t).

t = tA

v(tA)

t = tB

v(tB)

The average accelaration over the interval (tA, tB) is the change
in velocity per elapsed time, and is equal to

v(tB)− v(tA)
tB − tA
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Acceleration 4.5

t = tA
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The acceleration at time tA is the limit of the average acceleration
over the interval (tA, tB) where tB approaches tA:

a(tA) = lim
tB→tA

v(tB)− v(tA)
tB − tA

= v′(tA).

Acceleration is the derivative of velocity
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Higher order derivartives 4.6

Definition
Let n be a non-negative integer. The n-th derivative of f is denoted as
f (n) or d nf

d xn , and is defined as

f (n)(x) =


f (x) if n = 0,

f ′(x) if n = 1,
d
d x

(
f (n−1)(x)

)
otherwise.

The second derivative is denoted as f ′′ and not as f (2).

Acceleration is the second derivative of displacement: a(t) = s′′(t).
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Which is better: falling or chrashing? 4.7

50 km/h 10 m

UNIVERSITY OF TWENTE. Introduction to Mathematics and Modeling Lecture 3: Differentiation 24/25



Capacitors 4.8

Physical principles

(1) In a capacitor, the charge Q on the plates is proportional to the
voltage V over the plates: hence Q = CV , where C is the capacity.

(2) The current through a lead is the amount of charge per second
flowing through the lead.
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