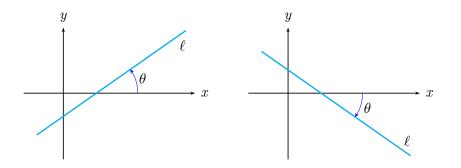
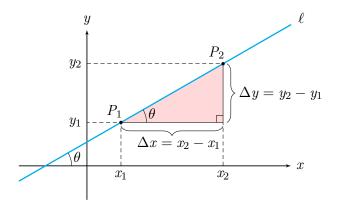


- 1 Directives concerning the MLP test
- 2 Section 3.1: tangents and the derivative at a point
- **3** Section 3.2: the derivative as a function
- 4 Section 3.4: velocity

Inclination

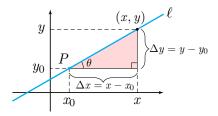


- The (angle of) inclination is the angle θ that ℓ makes with the horizontal axis.
- The angle is measured from the positive x-axis to ℓ .
- Turning counterclockwise means $\theta > 0$.
- **Turning clockwise means** $\theta < 0$.



- The slope of ℓ is $\tan \theta = \frac{\Delta y}{\Delta x} = \frac{y_2 y_1}{x_2 x_1}$.
- This holds for *every* choice $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$, as long as $P_1 \neq P_2$.

Equation of a line through a point with given slope



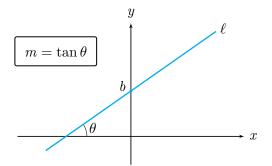
■ Let ℓ be the line through $P = (x_0, y_0)$ with slope m, then for every point $(x, y) \neq P$ on ℓ we have

$$m = \frac{y - y_0}{x - x_0} \qquad \qquad \Big) \times (x - x_0) \\ y - y_0 = m(x - x_0) \\ y = m(x - x_0) + y_0. \qquad \Big) + y_0$$

• The equation of the line through P and with slope m is

$$y = m(x - x_0) + y_0$$

Equation of a line with given slope and y-intercept



- Let ℓ be the line through with slope m and with y-intercept b, then ℓ passes through (0, b).
- The equation of ℓ is y = m(x 0) + b, simplified:

$$y = mx + b$$

2.1

We define the **derivative of** f at x_0 as

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

The number $f'(x_0)$ can be interpreted as:

- the slope of the graph of y = f(x) at the point $(x_0, f(x_0))$;
- the slope of the tangent line to the graph of y = f(x) at the point $(x_0, f(x_0))$;
- the rate of change of f(x) at the point x_0 .

2.2

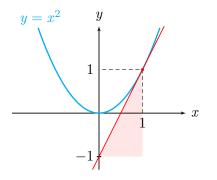
Example

Calculate the derivative of $f(x) = x^2$ at 1 with the definition.

h	1+h	f(1)	f(1+h)	f(1+h)-f(1)	$\frac{f(1\!+\!h)\!-\!f(1)}{h}$
1	2	1	4	3	3
0.5	1.5	1	2.25	1.25	2.5
0.25	1.25	1	1.5625	0.5625	2.25
0.01	1.01	1	1.0201	0.0201	2.01
0.001	1.001	1	1.002001	0.002001	2.001

This suggests: when h approaches 0, then $\frac{f(1+h) - f(1)}{h}$ approaches 2.

Calculate the derivative of $f(x) = x^2$ at 1 with the definition.



- The tangent line has slope f'(1) = 2 and passes through (1, f(1)) = (1, 1).
- Hence the tangent line is described by the equation

$$y = 2x - 1$$

2.5

Example

Calculate the derivative of $f(x) = x^2$ at a with the definition.

Example

Calculate the derivative of $f(x) = \sqrt{x}$ at a with the definition.

Example

Calculate the derivative of $f(x) = \frac{1}{x}$ at $a \neq 0$ with the definition.

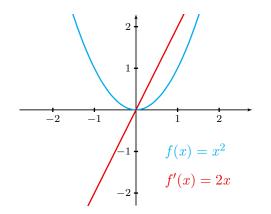
Definition

The derivative of the function f is the function f' whose value at x is

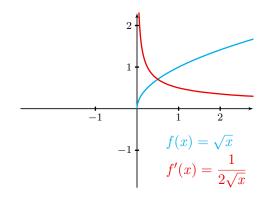
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- The function f is **differentiable at** x if f'(x) exists.
- The process of calculating f' is called **differentiation**.
- Alternative notations for the derivative are

$$\frac{df}{dx} \quad \text{and} \quad \frac{d}{dx}f(x).$$

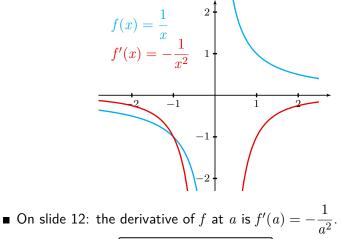


- On slide 10: the derivative of f at a is f'(a) = 2a.
- Replace a by x: the derivative of f is the function f'(x) = 2x.



UNIVERSITY OF TWENTE.

Example: the derivative of f(x) = 1/x



• Replace
$$a$$
 by x : $f'(x) = -\frac{1}{x^2}$ $(x \neq 0)$

Theorem

For all real numbers α we have

$$\frac{d}{dx}(x^{\alpha}) = \alpha \, x^{\alpha - 1}$$

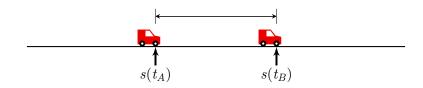
Check:

• Let
$$\alpha = \frac{1}{2}$$
, then
 $\frac{d}{dx}\left(x^{\frac{1}{2}}\right) =$

• Let $\alpha = -1$, then

$$\frac{d}{dx}\left(x^{-1}\right) =$$

Consider a moving object and assume that we know the traveled distance as a function of time s(t).



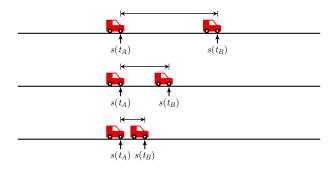
■ If the object moves from $s(t_A)$ to $s(t_B)$, the **displacement** is $s(t_B) - s(t_A)$.

• The average velocity over the interval (t_A, t_B) is the displacement per elapsed time, and is equal to

$$\frac{s(t_B) - s(t_A)}{t_B - t_A}$$

Velocity

Consider a moving object and assume that we know the traveled distance as a function of time s(t).



■ The **velocity at time** *t*_{*A*} is the limit of the average velocity over the interval (*t*_{*A*}, *t*_{*B*}) where *t*_{*B*} approaches *t*_{*A*}:

$$v(t_A) = \lim_{t_B \to t_A} \frac{s(t_B) - s(t_A)}{t_B - t_A}.$$

Velocity

$$v(t_A) = \lim_{t_B \to t_A} \frac{s(t_B) - s(t_A)}{t_B - t_A}.$$

Define $h = t_B - t_A$, then

•
$$t_B = t_A + h$$
 and

• " $t_B \rightarrow t_A$ " is equivalent to " $h \rightarrow 0$ ".

$$v(t_A) = \lim_{t_B \to t_A} \frac{s(t_B) - s(t_A)}{t_B - t_A}$$

= $\lim_{h \to 0} \frac{s(t_A + h) - s(t_A)}{h} = s'(t_A).$

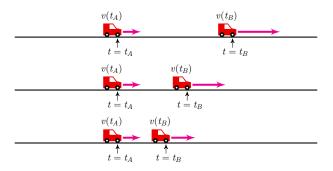
Velocity is the derivative of displacement

Consider a moving object and assume that we know the velocity as a function of time v(t).

■ The average accelaration over the interval (*t_A*, *t_B*) is the change in velocity per elapsed time, and is equal to

$$\left[\frac{v(t_B) - v(t_A)}{t_B - t_A}\right]$$

Acceleration



■ The acceleration at time *t_A* is the limit of the average acceleration over the interval (*t_A*, *t_B*) where *t_B* approaches *t_A*:

$$a(t_A) = \lim_{t_B \to t_A} \frac{v(t_B) - v(t_A)}{t_B - t_A} = v'(t_A).$$

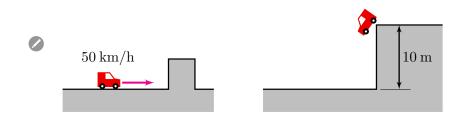
Acceleration is the derivative of velocity

Definition

Let *n* be a non-negative integer. The *n*-th derivative of *f* is denoted as $f^{(n)}$ or $\frac{d^n f}{dx^n}$, and is defined as

$$f^{(n)}(x) = \begin{cases} f(x) & \text{if } n = 0, \\ f'(x) & \text{if } n = 1, \\ \frac{d}{dx} \left(f^{(n-1)}(x) \right) & \text{otherwise.} \end{cases}$$

- The second derivative is denoted as f'' and not as $f^{(2)}$.
- Acceleration is the second derivative of displacement: a(t) = s''(t).



Physical principles

- (1) In a capacitor, the charge Q on the plates is proportional to the voltage V over the plates: hence Q = CV, where C is the capacity.
- (2) The current through a lead is the amount of charge per second flowing through the lead.

